
Ogg/Vorbis

1

Ogg/Vorbis
Een onderzoeksverslag van: Lucien Immink

Rotterdam, 9 september 2002

Ogg/Vorbis

2

Voorwoord

Dit document is geschreven in het kader van het onderzoek van Lucien Immink wat hij schreef in het
vierde jaar van de opleiding Media Technologie. Van de student wordt verwacht een literair
onderzoek te doen naar een relevant onderdeel van de opleiding, dit kan iets zijn wat de student is
tegen gekomen tijdens de lessen, maar mag ook iets zijn wat de student interesseert. De totale duur
van het onderzoek bedraagt 80 uur, wat gelijk staat aan 2 studiepunten.

Ik heb voor dit specifieke onderzoek gekozen omdat het onderwerp me al enkele jaren meer dan
boeit. Hoe ogg/vorbis precies in elkaar zat wist voor het schrijven van dit stuk nog niet. Hoe de
verschillende onderdelen het formaat maakte en hoe het formaat zich vergeleek met andere formaten
was me ook nog niet geheel duidelijk. Het verslag zal hier uitsluitsel over geven.

Ogg/Vorbis

3

Samenvatting

Ogg/Vorbis

4

Inhoudsopgave

1 INLEIDING __ 6

2 HET MENSELIJK OOR __ 7

2.1 OVERZICHT __ 7
2.2 SAMENVATTING ___ 8

3 OGG ___ 9

3.1 LOGICAL AND PHYSICAL BITSTREAMS __ 9
3.2 MAPPING RESTRICTIONS___ 9

3.2.1 additional end-to-end structure __ 9
3.2.2 sequential multiplexing (chaining) ___ 10
3.2.3 concurrent multiplexing (grouping) __ 10
3.2.4 sequential and concurrent multiplexing _____________________________________ 10
3.2.5 multiplexing example ___ 10

4 VORBIS ___ 12

4.1 APPLICATION __ 12
4.2 CLASSIFICATION__ 12
4.3 ASSUMPTIONS ___ 12
4.4 CODEC SETUP AND PROBABILITY MODEL__ 12
4.5 FORMAT SPECIFICATION __ 13
4.6 HARDWARE PROFILE __ 13

5 DECODER CONFIGURATION ___ 14

5.1 GLOBAL CONFIG__ 14
5.2 MODE ___ 14
5.3 MAPPING ___ 14
5.4 FLOOR___ 15
5.5 RESIDUE ___ 15
5.6 CODEBOOKS __ 15

6 HIGH-LEVEL DECODE PROCESS__ 16

6.1 DECODE SETUP __ 16
6.1.1 Identification Header ___ 16
6.1.2 Comment Header ___ 16
6.1.3 Setup Header___ 16

6.2 DECODE PROCEDURE__ 16
6.2.1 Packet type decode __ 17
6.2.2 Mode decode ___ 17
6.2.3 Window shape decode [long windows only] _________________________________ 17
6.2.4 floor decode __ 18
6.2.5 residue decode ___ 18
6.2.6 inverse channel coupling __ 18
6.2.7 generate floor curve__ 19
6.2.8 compute floor/residue dot product ___ 19
6.2.9 inverse monolithic transform (MDCT) ______________________________________ 19
6.2.10 overlap/add data __ 19

Ogg/Vorbis

5

6.2.11 cache right hand data __ 19
6.2.12 return finished audio data ___ 20

Horen in de ruimte

6

1 Inleiding

Dit onderzoek is verricht voor de opleiding MediaTechnologie van de Hogeschool van Utrecht te
Amersfoort. Gesteld is dat elke student een literair onderzoek moet verrichten binnen het vakgebied
van de opleiding. Met onderzoek wordt dan bedoeld: het verzamelen, bewerken en analyseren van
gegevens om meer te weten te komen. Onderzoek is het combineren van gegevens afkomstig uit
verschillende bronnen om tot nieuwe inzichten te komen.
Binnen dit kader is er voor dit specifieke onderzoek gekozen om het volgende te onderzoeken:

Horen in de ruimte

7

2 Het menselijk oor

Om goed te begrijpen hoe een computer 3D geluid kan produceren is het noodzakelijk het menselijk
oor te kennen. In het volgende hoofdstuk wordt uitgelegd hoe het menselijk oor in elkaar zit. Dit
hoofdstuk zal slechts een overzicht bieden van het oor, aangezien het gehoor al reeds behandeld is
binnen de opleiding. Voor geïnteresseerden staat er achter in een literatuurlijst met links naar
websites die geheel over het gehoor gaan.

2.1 Overzicht

Het is gebruikelijk het oor onder te verdelen in drie stukken, het buitenoor, het middenoor en het
binnenoor, zoals aangegeven in fig. 2.1. tezamen ook wel genoemd het perifere gehoor.

Het buitenoor omvat de oorschelp en de gehoorgang, die loopt tot aan het trommelvlies. De oorschelp
helpt bij het richting horen. De gehoorgang functioneert als een resonator die frequenties tussen de 1
en de 4 kHz versterkt; dit is precies het frequentiegebied dat voor spraak van belang is.

 Figuur 2.1
Het middenoor bevindt zich tussen het trommelvlies aan de buitenkant en het ovale venster meer
hoof dinwaarts. De luchtdrukverschillen duwen het trommelvlies beurtelings naar binnen en zuigen
het naar buiten. Via drie minuscule botjes, die - naar hun uiterlijk - hamer, aambeeld en stijgbeugel
heten, wordt de beweging van het trommelvlies doorgegeven aan het ovale venster. Omdat het ovale
venster een veel kleiner oppervlak heeft dan het trommelvlies en omdat de botjes als een hefboom
werken, worden de zwakke bewegingen van het trommelvlies mechanisch versterkt. De botjes
kunnen in hun bewegingen geremd worden door kleine spiertjes die reflexmatig worden
aangespannen wanneer het oor getroffen wordt door heel luide, lage trillingen. Na een rockconcert
blijven we enige tijd hardhorend omdat deze zelfbeschermingreflex zich niet meteen ontspant. Helaas

Horen in de ruimte

8

komt de reflex te langzaam op gang om ook gehoorbeschadiging als gevolg van explosies te
voorkomen.
Het binnenoor is voor de waarneming van spraak en muziek het belangrijkste deel van het perifere
gehoor. Hier worden de fysieke geluidstrillingen omgezet in elektrische trillingen voor verdere
verwerking in het centrale gehoor (d.w.z. in de hersenen).

2.2 Samenvatting

Dit onderzoek is gericht op de vraag of de akoestiek van de ene ruimte over te brengen is in een
willekeurige andere ruimte. Het is dan van belang om te begrijpen hoe de ontvanger het geluid hoort.
Daarom is het van belang een inzicht te hebben in de werking van het menselijk oor. Het buitenoor
omvat de oorschelp en de gehoorgang. De gehoorgang functioneert als een resonator die frequenties
tussen de 1 en de 4 kHz versterkt. Het middenoor bevindt zich tussen het trommelvlies aan de
buitenkant en het ovale venster meer hoofd inwaarts. Het binnenoor is voor de waarneming van
spraak en muziek het belangrijkste deel van het perifere gehoor.

Horen in de ruimte

9

3 Ogg

Ogg codecs use octet vectors of raw, compressed data (packets). These compressed packets do not
have any high-level structure or boundary information; strung together, they appear to be streams of
random bytes with no landmarks.

Raw packets may be used directly by transport mechanisms that provide their own framing and
packet-separation mechanisms (such as UDP datagrams). For stream based storage (such as files)
and transport (such as TCP streams or pipes), Vorbis and other future Ogg codecs use the Ogg
bitstream format to provide framing/sync, sync recapture after error, landmarks during seeking, and
enough information to properly separate data back into packets at the original packet boundaries
without relying on decoding to find packet boundaries.

3.1 Logical and physical bitstreams

Raw packets are grouped and encoded into contiguous pages of structured bitstream data called
logical bitstreams. A logical bitstream consists of pages, in order, belonging to a single codec
instance. Each page is a self contained entity (although it is possible that a packet may be split and
encoded across one or more pages); that is, the page decode mechanism is designed to recognize,
verify and handle single pages at a time from the overall bitstream.
Multiple logical bitstreams can be combined (with restrictions) into a single physical bitstream. A
physical bitstream consists of multiple logical bitstreams multiplexed at the page level and may
include a ’meta-header’ at the beginning of the multiplexed logical stream that serves as identification
magic. Whole pages are taken in order from multiple logical bitstreams and combined into a single
physical stream of pages. The decoder reconstructs the original logical bitstreams from the physical
bitstream by taking the pages in order from the physical bitstream and redirecting them into the
appropriate logical decoding entity. The simplest physical bitstream is a single, unmultiplexed logical
bitstream with no meta-header; this is referred to as a ’degenerate stream’.
Ogg Logical Bitstream Framing discusses the page format of an Ogg bitstream, the packet coding
process and logical bitstreams in detail. The remainder of this document specifies requirements for
constructing finished, physical Ogg bitstreams.

3.2 Mapping Restrictions

Logical bitstreams may not be mapped/multiplexed into physical bitstreams without restriction. Here
we discuss design restrictions on Ogg physical bitstreams in general, mostly to introduce design
rationale. Each ’media’ format defines its own (generally more restrictive) mapping. An ’Ogg Vorbis
Audio Bitstream’, for example, has a specific physical bitstream structure. An ’Ogg A/V’ bitstream (not
currently specified) will also mandate a specific, restricted physical bitstream format.

3.2.1 additional end-to-end structure

The framing specification defines ’beginning of stream’ and ’end of stream’ page markers via a header
flag (it is possible for a stream to consist of a single page). A stream always consists of an integer
number of pages, an easy requirement given the variable size nature of pages.
In addition to the header flag marking the first and last pages of a logical bitstream, the first page of
an Ogg bitstream obeys additional restrictions. Each individual media mapping specifies its own
implementation details regarding these restrictions.

Horen in de ruimte

10

The first page of a logical Ogg bitstream consists of a single, small ’initial header’ packet that includes
sufficient information to identify the exact CODEC type and media requirements of the logical
bitstream. The intent of this restriction is to simplify identifying the bitstream type and content; for a
given media type (or across all Ogg media types) we can know that we only need a small, fixed
amount of data to uniquely identify the bitstream type.
As an example, Ogg Vorbis places the name and revision of the Vorbis CODEC, the audio rate and
the audio quality into this initial header, thus simplifying vastly the certain identification of an Ogg
Vorbis audio bitstream.

3.2.2 sequential multiplexing (chaining)

The simplest form of logical bitstream multiplexing is concatenation (chaining). Complete logical
bitstreams are strung one-after-another in order. The bitstreams do not overlap; the final page of a
given logical bitstream is immediately followed by the initial page of the next. Chaining is the only
logical->physical mapping allowed by Ogg Vorbis.
Each chained logical bitstream must have a unique serial number within the scope of the physical
bitstream.

3.2.3 concurrent multiplexing (grouping)

Logical bitstreams may also be multiplexed ’in parallel’ (grouped). An example of grouping would be
to allow streaming of separate audio and video streams, using different codecs and different logical
bitstreams, in the same physical bitstream. Whole pages from multiple logical bitstreams are mixed
together.
The initial pages of each logical bitstream must appear first; the media mapping specifies the order of
the initial pages. For example, Ogg A/V will eventually specify an Ogg video bitstream with audio. The
mapping may specify that the physical bitstream must begin with the initial page of a logical video
bitstream, followed by the initial page of an audio stream. Unlike initial pages, terminal pages for the
logical bitstreams need not all occur contiguously (although a specific media mapping may require
this; it is not mandated by the generic Ogg stream spec). Terminal pages may be ’nil’ pages, that is,
pages containing no content but simply a page header with position information and the ’last page of
bitstream’ flag set in the page header.
Each grouped bitstream must have a unique serial number within the scope of the physical bitstream.

3.2.4 sequential and concurrent multiplexing

Groups of concurrently multiplexed bitstreams may be chained consecutively. Such a physical
bitstream obeys all the rules of both grouped and chained multiplexed streams; the groups, when
unchained , must stand on their own as a valid concurrently multiplexed bitstream.

3.2.5 multiplexing example

Below, we present an example of a grouped and chained bitstream:

In this example, we see pages from five total logical bitstreams multiplexed into a physical bitstream.
Note the following characteristics:

Horen in de ruimte

11

1. Grouped bitstreams begin together; all of the initial pages must appear before any data
pages. When concurrently multiplexed groups are chained, the new group does not begin
until all the bitstreams in the previous group have terminated.

2. The pages of concurrently multiplexed bitstreams need not conform to a regular order; the
only requirement is that page n of a logical bitstream follow page n-1 in the physical bitstream.
There are no restrictions on intervening pages belonging to other logical bitstreams. (Tying
page appearance to bitrate demands is one logical strategy, ie, the page appears at the
chronological point where decode requires more information).

Horen in de ruimte

12

4 Vorbis

4.1 Application

Vorbis is a general purpose perceptual audio CODEC intended to allow maximum encoder flexibility,
thus allowing it to scale competitively over an exceptionally wide range of bitrates. At the high
quality/bitrate end of the scale (CD or DAT rate stereo, 16/24 bits), it is in the same league as MPEG-
2 and MPC. Similarly, the 1.0 encoder can encode high-quality CD and DAT rate stereo at below
48kpbs without resampling to a lower rate. Vorbis is also intended for lower and higher sample rates
(from 8kHz telephony to 192kHz digital masters) and a range of channel representations (monaural,
polyphonic, stereo, quadraphonic, 5.1, ambisonic, or up to 255 discrete channels).

4.2 Classification

Vorbis I is a forward-adaptive monolithic transform CODEC based on the Modified Discrete Cosine
Transform. The codec is structured to allow addition of a hybrid wavelet filterbank in Vorbis II to offer
better transient response and reproduction using a transform better suited to localized time events.

4.3 Assumptions

The Vorbis CODEC design assumes a complex, psychoacoustically-aware encoder and simple, low-
complexity decoder. Vorbis decode is computationally simpler than mp3, although it does require
more working memory as Vorbis has no static probability model; the vector codebooks used in the
first stage of decoding from the bitstream are packed, in their entirety, into the Vorbis bitstream
headers. In packed form, these codebooks occupy only a few kilobytes; the extent to which they are
pre-decoded into a cache is the dominant factor in decoder memory usage.
Vorbis provides none of its own framing, synchronization or protection against errors; it is solely a
method of accepting input audio, dividing it into individual frames and compressing these frames into
raw, unformatted ’packets’. The decoder then accepts these raw packets in sequence, decodes them,
synthesizes audio frames from them, and reassembles the frames into a facsimile of the original
audio stream. Vorbis is a free-form VBR codec and packets have no minimum size, maximum size, or
fixed/expected size. Packets are designed that they may be truncated (or padded) and remain
decodable; this is not to be considered an error condition and is used extensively in bitrate
management in peeling. Both the transport mechanism and decoder must allow that a packet may be
any size, or end before or after packet decode expects.
Vorbis packets are thus intended to be used with a transport mechanism that provides free-form
framing, sync, positioning and error correction in accordance with these design assumptions, such as
Ogg (for file transport) or RTP (for network multicast). For purposes of a few examples in this
document, we will assume that Vorbis is to be embedded in an Ogg stream specifically, although this
is by no means a requirement or fundamental assumption in the Vorbis design.
The specifications for embedding Vorbis into an Ogg transport stream is in a separate document.

4.4 Codec Setup and Probability Model

Vorbis’s heritage is as a research CODEC and its current design reflects a desire to allow multiple
decades of continuous encoder improvement before running out of room within the codec
specification. For these reasons, configurable aspects codec setup intentionally lean toward the
extreme of forward adaptive.

Horen in de ruimte

13

The single most controversial design decision in Vorbis [and the most unusual for a Vorbis developer
to keep in mind] is that the entire probability model of the codec, the Huffman and VQ codebooks, is
packed into the bitstream header along with extensive CODEC setup parameters (often several
hundred fields). This makes it impossible, as it would be with MPEG audio layers, to embed a simple
frame type flag in each audio packet, or begin decode at any frame in the stream without having
previously fetched the codec setup header. [Note: Vorbis *can* initiate decode at any arbitrary packet
within a bitstream so long as the codec has been initialized/setup with the setup headers].
Thus, Vorbis headers are both required for decode to begin and relatively large as bitstream headers
go. The header size is unbounded, although for streaming a rule-of-thumb of 4kB or less is
recommended (and Xiph.Org’s Vorbis encoder follows this suggestion).
Our own design work indicates the the primary liability of the required header is in mindshare; it is an
unusual design and thus causes some amount of complaint among engineers as this runs against
current design trends (and also points out limitations in some existing software/interface designs,
such as Windows’ ACM codec framework). However, we find that it does not fundamentally limit
Vorbis’s suitable application space.

4.5 Format Specification

The Vorbis format is well-defined by its decode specification; any encoder that produces packets that
are correctly decoded by the reference Vorbis decoder described below may be considered a proper
Vorbis encoder. A decoder must faithfully and completely implement the specification defined below
[except where noted] to be considered a proper Vorbis decoder.

4.6 Hardware Profile

Although Vorbis decode is computationally simple, it may still run into specific limitations of an
embedded design. For this reason, embedded designs are allowed to deviate in limited ways from the
’full’ decode specification yet still be certified compliant. These optional omissions are labelled in the
spec where relevant.

Horen in de ruimte

14

5 Decoder Configuration

Decoder setup consists of configuration of multiple, self-contained component abstractions that
perform specific functions in the decode pipeline. Each different component instance of a specific type
is semantically interchangeable; decoder configuration consists both of internal component
configuration, as well as arrangement of specific instances into a decode pipeline. Componentry
arrangement is roughly as follows:

5.1 Global Config

Global codec configuration consists of a few audio related fields (sample rate, channels), Vorbis
version (always ’0’ in Vorbis I), bitrate hints, and the lists of component instances. All other
configuration is in the context of specific components.

5.2 Mode

Each Vorbis frame is coded according to a master ’mode’. A bitstream may use one or many modes.
The mode mechanism is used to encode a frame according to one of multiple possible methods with
the intention of choosing a method best suited to that frame. Different modes are, e.g. how frame size
is changed from frame to frame. The mode number of a frame serves as a top level configuration
switch for all other specific aspects of frame decode.
A ’mode’ configuration consists of a frame size setting, window type (always 0, the Vorbis window, in
Vorbis I), transform type (always type 0, the MDCT, in Vorbis I) and a mapping number. The mapping
number specifies which mapping configuration instance to use for low-level packet decode and
synthesis.

5.3 Mapping

A mapping contains a channel coupling description and a list of ’submaps’ that bundle sets of channel
vectors together for grouped encoding and decoding. These submaps are not references to external
components; the submap list is internal and specific to a mapping.
A ’submap’ is a configuration/grouping that applies to a subset of floor and residue vectors within a
mapping. The submap functions as a last layer of indirection such that specific special floor or residue
settings can be applied not only to all the vectors in a given mode, but also specific vectors in a
specific mode. Each submap specifies the proper floor and residue instance number to use for
decoding that submap’s spectral floor and spectral residue vectors.
As an example:
Assume a Vorbis stream that contains six channels in the standard 5.1 format. The sixth channel, as
is normal in 5.1, is bass only. Therefore it would be wasteful to encode a full-spectrum version of it as
with the other channels. The submapping mechanism can be used to apply a full range floor and

Horen in de ruimte

15

residue encoding to channels 0 through 4, and a bass-only representation to the bass channel, thus
saving space. In this example, channels 0-4 belong to submap 0 (which indicates use of a full-range
floor) and channel 5 belongs to submap 1, which uses a bass-only representation.

5.4 Floor

Vorbis encodes a spectral ’floor’ vector for each PCM channel. This vector is a low-resolution
representation of the audio spectrum for the given channel in the current frame, generally used akin to
a whitening filter. It is named a ’floor’ because the Xiph.Org reference encoder has historically used it
as a unit-baseline for spectral resolution.
A floor encoding may be of two types. Floor 0 uses a packed LSP representation on a dB amplitude
scale and Bark frequency scale. Floor 1 represents the curve as a piecewise linear interpolated
representation on a dB amplitude scale and linear frequency scale. The two floors are semantically
interchangeable in encoding/decoding. However, floor type 1 provides more stable inter-frame
behavior, and so is the preferred choice in all coupled-stereo and high bitrate modes. Floor 1 is also
considerably less expensive to decode than floor 0.
Floor 0 is not to be considered deprecated, but it is of limited modern use. No known Vorbis encoder
past Xiph.org’s own beta 4 makes use of floor 0.
The values coded/decoded by a floor are both compactly formatted and make use of entropy coding
to save space. For this reason, a floor configuration generally refers to multiple codebooks in the
codebook component list. Entropy coding is thus provided as an abstraction, and each floor instance
may choose from any and all available codebooks when coding/decoding.

5.5 Residue

The spectral residue is the fine structure of the audio spectrum once the floor curve has been
subtracted out. In simplest terms, it is coded in the bitstream using cascaded (multi-pass) vector
quantization according to one of three specific packing/coding algorithms numbered 0 through 2. The
packing algorithm details are configured by residue instance. As with the floor components, the final
VQ/entropy encoding is provided by external codebook instances and each residue instance may
choose from any and all available codebooks.

5.6 Codebooks

Codebooks are a self-contained abstraction that perform entropy decoding and, optionally, use the
entropy-decoded integer value as an offset into an index of output value vectors, returning the
indicated vector of values.
The entropy coding in a Vorbis I codebook is provided by a standard Huffman binary tree
representation. This tree is tightly packed using one of several methods, depending on whether
codeword lengths are ordered or unordered, or the tree is sparse.
The codebook vector index is similarly packed according to index characteristic. Most commonly, the
vector index is encoded as a single list of values of possible values that are then permuted into a list
of n-dimensional rows (lattice VQ).

Horen in de ruimte

16

6 High-level Decode Process

6.1 Decode setup

Before decoding can begin, a decoder must initialize using the bitstream headers matching the
stream to be decoded. Vorbis uses three header packets; all are required, in-order, by this
specification. Once set up, decode may begin at any audio packet belonging to the Vorbis stream. In
Vorbis I, all packets after the three initial headers are audio packets.
The header packets are, in order, the identification header, the comments header, and the setup
header.

6.1.1 Identification Header

The identification header identifies the bitstream as Vorbis, Vorbis version, and the simple audio
characteristics of the stream such as sample rate and number of channels.

6.1.2 Comment Header

The comment header includes user text comments ["tags"] and a vendor string for the
application/library that produced the bitstream. The encoding of the comment header is described
within this document; the proper use of the comment fields is described in the Ogg Vorbis comment
field specification.

6.1.3 Setup Header

The setup header includes extensive CODEC setup information as well as the complete VQ and
Huffman codebooks needed for decode.

6.2 Decode Procedure

The decoding and synthesis procedure for all audio packets is fundamentally the same.

1. decode packet type flag
2. decode mode number
3. decode window shape [long windows only]
4. decode floor
5. decode residue into residue vectors
6. inverse channel coupling of residue vectors
7. generate floor curve from decoded floor data
8. compute dot product of floor and residue, producing audio spectrum vector
9. inverse monolithic transform of audio spectrum vector, always an MDCT in Vorbis I
10. overlap/add left-hand output of transform with right-hand output of previous frame
11. store right hand-data from transform of current frame for future lapping.
12. if not first frame, return results of overlap/add as audio result of current frame

Note that clever rearrangement of the synthesis arithmetic is possible; as an example, one can take
advantage of symmetries in the MDCT to store the right-hand transform data of a partial MDCT for a
50% inter-frame buffer space savings, and then complete the transform later before overlap/add with

Horen in de ruimte

17

the next frame. This optimization produces entirely equivalent output and is naturally perfectly legal.
The decoder must be entirely mathematically equivalent to the specification, it need not be a literal
semantic implementation.

6.2.1 Packet type decode

Vorbis I uses four packet types. The first three packet types mark each of the three Vorbis headers
described above. The fourth packet type marks an audio packet. All others packet types are reserved;
packets marked with a reserved flag type should be ignored.
Following the three header packets, all packets in a Vorbis I stream are audio. The first step of audio
packet decode is to read and verify the packet type; a non-audio packet when audio is expected
indicates stream corruption or a non-compliant stream. The decoder must ignore the packet and not
attempt decoding it to audio.

6.2.2 Mode decode

Vorbis allows an encoder to set up multiple, numbered packet ’modes’, as described earlier, all of
which may be used in a given Vorbis stream. The mode is encoded as an integer used as a direct
offset into the mode instance index.

6.2.3 Window shape decode [long windows only]

Vorbis frames may be one of two PCM sample sizes specified during codec setup. In Vorbis I, legal
frame sizes are powers of two from 64 to 8192 samples. Aside from coupling, Vorbis handles
channels as independent vectors and these frame sizes are in samples per channel.
Vorbis uses an overlapping transform, namely the MDCT, to blend one frame into the next, avoiding
most inter-frame block boundary artifacts. The MDCT output of one frame is windowed according to
MDCT requirements, overlapped 50% with the output of the previous frame and added. The window
shape assures seamless reconstruction.
This is easy to visualize in the case of equal sized-windows:

And slightly more complex in the case of overlapping unequal sized windows:

Horen in de ruimte

18

In the unequal-sized window case, the window shape of the long window must be modified for
seamless lapping as above. It is possible to correctly infer window shape to be applied to the current
window from knowing the sizes of the current, previous and next window. It is legal for a decoder to
use this method; However, in the case of a long window (short windows require no modification),
Vorbis also codes two flag bits to specify pre- and post- window shape. Although not strictly
necessary for function, this minor redundancy allows a packet to be fully decoded to the point of
lapping entirely independently of any other packet, allowing easier abstraction of decode layers as
well as allowing a greater level of easy parallelism in encode and decode.
A description of valid window functions for use with an inverse MDCT can be found in the paper _The
use of multirate filter banks for coding of high quality digital audio_, by T. Sporer, K. Brandenburg and
B. Edler. Vorbis windows all use the slope function y=sin(2PI*sin^2(x/n)).

6.2.4 floor decode

Each floor is encoded/decoded in channel order, however each floor belongs to a ’submap’ that
specifies which floor configuration to use. All floors are decoded before residue decode begins.

6.2.5 residue decode

Although the number of residue vectors equals the number of channels, channel coupling may mean
that the raw residue vectors extracted during decode do not map directly to specific channels. When
channel coupling is in use, some vectors will correspond to coupled magnitude or angle. The coupling
relationships are described in the codec setup and may differ from frame to frame, due to different
mode numbers.
Vorbis codes residue vectors in groups by submap; the coding is done in submap order from submap
0 through n-1. This differs from floors which are coded using a configuration provided by submap
number, but are coded individually in channel order.

6.2.6 inverse channel coupling

A detailed discussion of stereo in the Vorbis codec can be found in the document _Stereo Channel
Coupling in the Vorbis CODEC_. Vorbis is not limited to only stereo coupling, but the stereo document
also gives a good overview of the generic coupling mechanism.
Vorbis coupling applies to pairs of residue vectors at a time; decoupling is done in-place a pair at a
time in the order and using the vectors specified in the current mapping configuration. The decoupling
operation is the same for all pairs, converting square polar representation (where one vector is
magnitude and the second angle) back to Cartesian representation.
After decoupling, in order, each pair of vectors on the coupling list in, the resulting residue vector
represents the fine spectral detail of each output channel.

Horen in de ruimte

19

6.2.7 generate floor curve

The decoder may choose to generate the floor curve at any appropriate time. It is reasonable to
generate the output curve when the floor data is decoded from the raw packet, or it can be generated
after inverse coupling and applied to the spectral residue directly, combining generation and the dot
product into one step and eliminating some working space.
Both floor 0 and floor 1 generate a linear-range, linear-domain output vector to be multiplied (dot
product) by the linear-range, linear-domain spectral residue.

6.2.8 compute floor/residue dot product

This step is straightforward; for each output channel, the decoder multiplies the floor curve and
residue vectors element by element, producing the finished audio spectrum of each channel.
One point is worth mentioning about this dot product; a common mistake in a fixed point
implementation might be to assume that a 32 bit fixed-point representation for floor and residue and
direct multiplication of the vectors is sufficient for acceptable spectral depth in all cases because it
happens to mostly work with the current Xiph.Org reference encoder.
However, floor vector values can span ~140dB (~24 bits unsigned), and the audio spectrum vector
should represent a minimum of 120dB (~21 bits with sign), even when output is to a 16 bit PCM
device. For the residue vector to represent full scale if the floor is nailed to -140dB, it must be able to
span 0 to +140dB. For the residue vector to reach full scale if the floor is nailed at 0dB, it must be able
to represent -140dB to +0dB. Thus, in order to handle full range dynamics, a residue vector may span
-140dB to +140dB entirely within spec. A 280dB range is approximately 48 bits with sign; thus the
residue vector must be able to represent a 48 bit range and the dot product must be able to handle an
effective 48 bit times 24 bit multiplication. This range may be achieved using large (64 bit or larger)
integers, or implementing a movable binary point representation.

6.2.9 inverse monolithic transform (MDCT)

The audio spectrum is converted back into time domain PCM audio via an inverse Modified Discrete
Cosine Transform (MDCT). A detailed description of the MDCT is available in the paper _The use of
multirate filter banks for coding of high quality digital audio_, by T. Sporer, K. Brandenburg and B.
Edler.
Note that the PCM produced directly from the MDCT is not yet finished audio; it must be lapped with
surrounding frames using an appropriate window (such as the Vorbis window) before the MDCT can
be considered orthogonal.

6.2.10 overlap/add data

Windowed MDCT output is overlapped and added with the right hand data of the previous window
such that the 3/4 point of the previous window is aligned with the 1/4 point of the current window (as
illustrated in the window overlap diagram). At this point, the audio data between the center of the
previous frame and the center of the current frame is now finished and ready to be returned.

6.2.11 cache right hand data

The decoder must cache the right hand portion of the current frame to be lapped with the left hand
portion of the next frame.

Horen in de ruimte

20

6.2.12 return finished audio data

The overlapped portion produced from overlapping the previous and current frame data is finished
data to be returned by the decoder. This data spans from the center of the previous window to the
center of the current window. In the case of same-sized windows, the amount of data to return is one-
half block consisting of and only of the overlapped portions. When overlapping a short and long
window, much of the returned range is not actually overlap. This does not damage transform
orthogonality. Pay attention however to returning the correct data range; the amount of data to be
returned is:
window_blocksize(previous_window)/4+window_blocksize(current_window)/4 from the center of the
previous window to the center of the current window.
Data is not returned from the first frame; it must be used to ’prime’ the decode engine. The encoder
accounts for this priming when calculating PCM offsets; after the first frame, the proper PCM output
offset is ’0’ (as no data has been returned yet).

